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Abstract&An analytical method of solution to the non-linear problem of centrifugally generated free 
convection in a rotating porous box is presented. The free convection results from differential heating of 
the horizontal walls leading to temperature gradients perpendicular to the centrifugal body force. The 
validity of the solution was found to be restricted to small values of the centrifugal Rayleigh number, 
althoilgh this restriction was not explicitlf @posed. The results are compared to an asymptotic solution 
of the corresponding problem for a long rotating porous box. A direct extraction and substitution of the 
dependent variables was found to be useful in this case for de-coupling the non-linear partial differential 
equations, resulting in a set of independent non-linear ordinary differential equations which was solved 
analytically. The solution results, their significance and their validity domain are discussed in their physical 

context. 

1. INTRODUCTION 

FREE convection in rotating porous media is of prac- 
tical interest in different engineering disciplines like 
the food process industry, the chemical process indus- 
try, centrifugal filtration processes and other modern, 
non-traditional applications of the porous media 
approach. A more detailed discussion regarding fur- 
ther applications is presented by Vadasz [ 11. 

For a rotating porous matrix, the centrifugal accel- 
eration is introduced as a body force. This force may 
create free convection in the same manner as the grav- 
ity force causes natural convection. For example, 
differential heating of the vertical walls generates 
unconditional natural convection under gravity con- 
ditions. Similarly, differential heating of the hori- 
zontal walls generates unconditional free convection 
under centrifugal conditions. Very few research results 
are available for natural convection in rotating porous 
media, most of them focusing on convection resulting 
from gravity in the presence of a single fluid or binary 
mixture (see Patil and Vaidyanathan [2], Jou and Liaw 
[3,4], Rudraiah er al. [5], Chakrabarty and Gupta [6], 
and Palm and Tyvand [I]). The non-linear problem 
of free convection in rotating porous media resulting 
from the centrifugal body force was addressed by Vad- 
asz [8,9]. An asymptotic expansion was used by Vad- 
asz [8] in the case of a small aspect ratio of the rec- 
tangular porous domain to obtain the solution for 
centrifugally generated free convection. Vadasz [9] 
presented the effect of Coriolis acceleration on the 
leading order free convection for high values of porous 
media Ekman number. Secondary flows in a plane 
orthogonal to the leading order free convection were 
obtained from the analytical solution of the goyerning 
equations. 

It is common practice to rely on asymptotic solu- 
tions if they are confirmed by experimental measure- 
ments. As measurements related to the effect of 
rotation in porous media are not yet available, a com- 
parison between the asymptotic solution and another 
analytical method becomes necessary in order to con- 
firm the asymptotic solution results. A direct method 
of solution is presented in this paper and comparison 
between its results and the corresponding asymptotic 
solution is carried out. From the results it becomes 
evident that the present method is restricted to small 
values of the centrifugal Rayleigh number, although 
this restriction was not explicitly imposed. 

2. PROBLEM FORMULATION 

A rotating fluid saturated porous domain confined 
by rigid boundaries (Fig. 1) is considered. The rec- 
tangular domain is heated from above and cooled 
from below. Its lateral walls are insulated. The width 
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FIG. I. A rotating rectangular porous domain heated from 
above and cooled from below. The subscript * stands for 

dimensional values. 
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NOMENCLATURE 

unit vector in the x-direction 
unit vector in the y-direction 
unit vector in the z-direction 
height of the domain, used as the 
length scale 
permeability of the porous domain 
length of the porous domain 
aspect ratio, = L,IH, 
ratio between the heat capacity of the 
fluid and the effective heat capacity 
of the porous domain 
Nusselt number 
reduced pressure generalized to 
include the constant component of the 
centrifugal term (dimensionless) 
dimensionless specific flow rate vector, 
equals u&, + v$ + w&, 
porous media Rayleigh number 
related to the centrifugal body 
force, = Pr.AT,w,ZH:k,M,/cc,,vo 
dimensionless temperature, 
= (T* - Tc.)/( TH* - T,.) 
coldest wall temperature 
hottest wall temperature 

of the domain is much smaller than its height or 
length ; thus the problem can be regarded as two- 
dimensional. Free convection occurs as a result of 
the centrifugal body force, while the gravity force is 
neglected. The solution is required for regions not 
close to the side-wall next to x* = L,. The Coriolis 
effect is considered small and most of the inertial for- 
ces are neglected as Darcy’s regime is assumed. The 
only inertial effect considered is the centrifugal accel- 
eration as far as changes in density are concerned. 
This assumption is compatible with the Boussinesq 
approximation for natural convection in pure fluids 
(non-porous domains). By assuming steady state con- 
ditions, the following set of governing equations is 
obtained : 

v*q = 0 (1) 

q = - Vp - Ra,,,sT@, (2) 

V’T-q*VT= 0. (3) 

Equations (I), (2) and (3) are presented in a 
dimensionless form, where the values of H,. 
a,,/H,M,, p*a,,/k*Mf and AT, are used to scale the 
length, specific flow rate, pressure and tem- 
perature variations, respectively. The centrifugal 
Rayleigh number is modified to include the centri- 
fugal body force instead of gravity, in the form 
Ra,,] = /I& * A T,wi Hi k, Mfjaeo vu. The scaling tem- 
nerature difference is chosen to be the difference 

14 horizontal x-component of the specific 
flow rate 

v horizontal y-component of the specific 
flow rate 

M1 vertical component of the specific flow 
rate 

X horizontal length coordinate 

Y horizontal width coordinate 
2 vertical coordinate. 

Greek symbols 

x,0 effective thermal diffusivity 

B 
ATic 

thermal expansion coefficient 
characteristic temperature difference 

VO fluid’s kinematic viscosity 

* stream function 

w, angular velocity of the rotating box 

Subscripts 
* dimensional values 
0 reference values 
C characteristic values 
C related to the coldest wall 
H related to the hottest wall. 
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between the hot and cold wall temperatures, thus 
T = (T* - Tc.)/( THe - Tc.). Following the assump- 
tion of two-dimensional flow, v = 0 and a( *)/ay = 0. 
To obtain an analytical solution to the non-linear 
convection problem, a further assumption is made, 
namely that the vertical component of the specific flow 
rate w and the temperature Tare independent of the 
horizontal coordinate x, i.e. dw/dx = aT/ax = 0 
Vxc(0, L) and are therefore functions of z only. It 
is this assumption that will subsequently restrict the 
validity domain of the results to small values of Ra,,,. 
Substituting these assumptions into equations (l)-(3) 
yields 

(4) 

d”T dT 
__ -,,,- = 0 
dz2 d; 

3. ANALYTICAL SOLUTION 

3.1. Reduced set of equations 
The following method of solution is adopted for 

solving the non-linear counled set of eauations (4)- 
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(7). The temperature Tis extracted from equation (5) 
and expressed in terms of x, 3p/Sx and u: leading to 

T= ~ u+$ ;Ro.,s 
[ I 

This expression of T is introduced into equation (7) 
and the derivative (a/ax) is applied to the result. Then, 
substituting the continuity equation (4) in the form 
du/dx = -dw/dz and equation (6) into the results and 
considering that d’w/d? = 0 yields an equation for w 
in the form : 

Equation (8) is a non-linear ordinary differential 
equation for w(z). An interesting observation regard- 
ing equation (8) is the fact that it is identicpl ,to the 
Blasius equation for boundary layer flows of pure 
fluids (non-porous domain) over a flat plate. To 
observe this one simply has to substitute 
w(z) = -f’(z)/2 to obtain 2f”‘+ff” = 0, which is the 
Blasius equation. Unfortunately, no further analogy 
to the boundary layer flow in pure fluids exists, mainly 
because of the quite different boundary conditions 
and because the derivatives [d( * )/dz] and the flow (w) 
are in the same direction. 

For u to be consistent with the assumption that 
w = w(z), it must be represented in the form : 

u = W(Z)> (9) 

where q(z) = -dw/dz according to equation (4). To 
accommodate the equations and the assumptions, the 
pressure derivative c?p/cYx in equation (5) must there- 
fore have the form ap/ax = xP, where P is a constant, 
i.e. w z W(Z) = -ap/az and T s T(z), u = xv(z). To 
obtain the value of this constant P. a condition of 
no net flow through any vertical cross-section in the 
domain is imposed, stating that l: udz = 0. By using 
equations (5) and (9), this condition implies that 

s 
‘&)dr= -1; Pdz-Ra,,[; T(z)d,_=O; (10) 

0 

hence we obtain a relationship between P and T(z) in 
the form : 

P = -Rli,, T(Z) d:. (11) 

Therefore, the explicit numerical value of P should be 
obtained from the solution for T, w and u. An equa- 
tion for q(z) is obtained similarly as equation (8) for 
w, by extracting w from equation (7), substituting it 
into the continuity equation (4) and using equations 
(5) and (6) after cross differentiating them. leading to 

(p’&“- Q”2 + ‘p’p’2 = 0” (12) 

where ( * )’ stands for d( + )/dz. 
The relationship between (P(Z) and T(z) is given by 

T(z) = - & tp+ ml, 
II, 

(13) 

where P is a constant defined by (11). 
In practice, solving equation (8) for w(z) subject to 

the corresponding boundary conditions is sufficient 
for obtaining the complete solution. Following that, 
q(z) can be evaluated as cp = -dw/dz [see text fol- 
lowing equation (9)] and substituted into equation 
(13), once the value of P is known, to evaluate T(z). 

3.2. Boundary conditions 
Three boundary conditions are necessary to solve 

equation (8) for w(z). The non-penetration boundary 
conditions at the top and bottom, i.e. w = 0 at z = 0 
and at z = 1, are two of the three. Additional bound- 
ary conditions are obtained by using the given tem- 
peratures at the boundaries, i.e. T = 0 at z = 0 and 
T = 1 at z = 1. Introducing these boundary con- 
ditions into (13) yields ~(0) = -P at z = 0 and 
~(1) = -P- Ra,,, at z = 1. Since cp = -dw/dz, the 
complete set of boundary conditions for w can be 
presented in the form : 

dw 
z=O: w=O and -=P 

dz 
(14a, b) 

z = 1: w = 0 and z= P+Ra,. (14~ d) 

Equations (14a-d) represent four boundary 
conditions, while only three are necessary to solve 
equation (8). The reason for the fourth condition 
comes from the introduction of the constant P, whose 
value remains to be determined. Hence, the additional 
two boundary conditions are expressed in terms of the 
unknown constant P and the solution subject to these 
four conditions will determine the value of P as well. 

3.3. Method of’solution 
A method similar to Blasius’s method of solution 

is applied to solve equation (8). Therefore, w(z) is 
expressed as a$nite power series in the form : 

w = f a,z’. 
I=0 

(15) 

Substituting equation (15) into (8) and-equating like 
powers of z leads to a set of recursive relationships 
among the coefficients. Substituting equation (1.3 into 
the boundary conditions (14) yields 

a,,=O; a, =P (16a,b) 
IV, m 
,Z,u, = 0; c ia, = P+Ra ,,,. (16c,d) 

I= I 

The number of terms in the series (15) or (16c, d) was 
established from a balance between the requirement 
to have enough terms to get a significant polynomial 
expression for the third derivative in equation (8) and 
the need to keep the problem of evaluating the 
coefficients practical for solving by not including too 
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many coefficients in the series. Form = 7 the recursive 
relationships among the coefficients can be solved to 
express the coefficients a, (i = 4, 5, 6, 7) in terms of a, 
and a2 in the forms a3 = 0, a4 = a,a,/12, a5 = 
a:/30, a6 = u:u2/120, u, = 1 la,a:/1260. Introducing 
these expressions and a,-, from (16a) into (16c, d) 
results in the following set of two non-linear algebraic 
equations for a, and a2 : 

I2Orr,+l2O~~+lO~l,~~+4a:+u:a,+~~,~~ =0 

(17a) 

+ %~,a; = 120Ra,,. (17b) 

It should be pointed out that according to (16b) the 
solution for a, determines the value of the constant P. 
The solution to the non-linear set of algebraic equa- 
tions was found by using Muthematica [lo] for sym- 
bolic as well as numerical computation. The de-coup- 
ling of equations (17a, b) leads to a sixth order 
algebraic equation for each of the unknowns a, and 
a*. Since no analytical solution is known to the sixth 
polynomial order of an algebraic equation, the roots 
at this stage are obtained numerically. Accordingly, 
for any given value of Ra,,,, six sets of roots for [a,, 
a?] are obtained. Some of the roots are complex or 
imaginary and are therefore ruled out, since W(Z) 
should be a real function. Among the remaining real 
roots the possibility of multiple solutions which are 
physically significant was investigated. The results 
show that other real roots have to be excluded as well, 
as they violate basic physical principles leaving the 
smallest set of roots as the only acceptable solution. 
These roots, when introduced into the expressions for 
the a, values [see text following equation (16)] and 
into (15), transform expression (15) into the accurate 
solution of equation (8) and satisfy accurately the 
boundary conditions (14). Therefore, as long as this 
physically acceptable set of roots exists, equation (15) 
represents the analytical solution for w(z). However, 
as the value of Ra, is increased more complex roots 
result from solving (17) and the physically significant 
roots disappear from the solution. It is at this value 
of Ra,,, where the validity of the solution breaks down. 
Including more terms in the power series rep- 
resentation of IV(Z) may extend the range of Ra,,, values 
permitting acceptable solutions. 

4. RESULTS AND DISCUSSION 

The physically significant set of roots a, and a2 
are presented in Fig. 2(a) as a function of Ra,,. The 
corresponding values of a, (i = 4, 5, 6, 7) as evaluated 
by using the relationships among the coefficients [see 
text following equation (16)] are presented in Fig. 2(b, 
c). By comparing the curves in Fig. 2 it can be observed 
that while the higher order coefficients are small for 

Raal 
FIG. 2. Graphical description of the results for the coefficients 
as a function of Ra,, : (a) values of a, and a,; (b) values of a4 

and a, ; (c) values of a, and (1,. 

small values of Ra,,,, their absolute values increase 
much faster than the values of u, and a? as Rn,,, 
increases. Therefore, for higher values of Ru, the 
higher order coefficients’ contribution becomes more 
significant. Substitution of the evaluated coefficients 
into equation (15) yields the solution for w(z). The 
solution for q(z) = -dw/dz as obtained upon taking 
the derivative of w and u is represented by equation 
(9), i.e. u = ,ucp(z). Since according to (16a) P = a,, 
the solution for T is evaluated next by using equation 
(13). These solutions are presented in Fig. 3 for two 
values of Ra,,>. i.e. Ra,,, = 0.5 and Ra,,, = 4.5. The solu- 
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FIG. 3. Graphical description of the results for the specific flow rate components and temperature for two 
values of Ru, (Ra,,, = 0.5 and Ra, = 4.5). (a) Vertical profile of w/Ra,,. (b) Vertical profile of u/xRa,. (c) 

Vertical temperature profile T. 

tion for w/Ra,, is presented in Fig. 3(a). It is apparent 
in the figure that only a slight variation of the values 
of jw/Ra,( results for Ra, = 4.5 in comparison with 
Ra, = 0.5. This suggests that the intensity of the flow 
varies almost linearly with Ra,. However, a more 
significant observation can be made from Fig. 3(a). 
The location where 1 w 1 is maximum is z = 0.5 for 
Ra, = 0.5, but this maximum moves downwards to 
z = 0.47 for Ra, = 4.5, resulting in a break of sym- 
metry as Ra, increases. The reason for this break of 
symmetry is better observed from Fig. 3(b), which 
represents the solution for u/xRa,. For Ra,, = 0.5, 
u/xRa,,> is a straight line representing a flow in the 
positive x-direction in the bottom half of the domain, 
i.e. for z E [0,0.5] and a backward flow (in the negative 
x-direction) in the top half, i.e. for ZE[O, OS]. 
However, for Ra,, = 4.5 the zero of u/xRa,,, does not 
occur at z = 0.5 but at z = 0.47, and the plot is no 
longer linear. This effect, which results from increasing 
the value of the centrifugal Rayleigh number, is appar- 
ent in Fig. 3(c), which represents the temperature pro- 
file. The convection effect on T(z) is clearly felt for 
Ru,,, = 4.5, while for Ra,,, = 0.5, T(Z) is linear per- 
taining to a conduction regime. The break of sym- 
metry with increasing Ra,,, was also obtained in ref. [S] 
by using an asymptotic solution, although the results 
presented in ref. [8] are not definite in this aspect as 
the asymptotic expansion solution is limited to the 
first two terms in the series. 

As the flow is two-dimensional, streamlines can be 
plotted by introducing the stream function cor- 
responding to the llow solution, i.c. u = i$,‘i; and 
IZ’ = -@/8x. This stream function is introduced only 
for the purpose of presentation of results. Therefore. 
an example of the flow field represented by the stream- 
lines is presented in Fig. 4 for Ra,., = 4 and for an 

aspect ratio of 3 (excluding the region next to the side- 
wall at x = L). Outside the end region next to x = L 
the streamlines remain open on the right hand side. 
They are expected to close in the end region. Never- 
theless, the streamlines close on the left hand side, 
throughout the domain. The reason for this is the 
centrifugal acceleration, which causes u to vary lin- 
early with x, thus creating (due to continuity equa- 
tion) a non-vanishing vertical component of the spec- 
ific flow rate w at all values of x. 

The local Nusselt number representing the local 
vertical heat flux is defined as Nu = I -aT/az II = ,,. 
Substituting for T by using its previously presented 
solution, the value of NM is expressed by 
Nu = 2a,/Ra,,,. By introducing the corresponding 
values of a, as presented previously for different values 
of Ra,,, into this relationship for Nu, its value is evalu- 
ated as a function of Ra,,,. The results of this evaluation 
are presented in Fig. 5. A comparison between the 
present results of Nu and the results obtained by Vad- 
asz [8] using an asymptotic solution is ajso presented 
in Fig. 5. The two results compare well as long as 
Ra,,, is very small. However, for increasing Ra,,, the 

\r 

v=o 

FIG. 4. Graphical description of the resulting how field ; five 
streamlines equally spaced between their minimum value 
I),,,,, = 0 at the rigid boundaries and their maximum value 
$.,&X = 1.5% The values in the figure correspond to every 

other streamline. 
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-Nu coefficients LI, and LIP leads to physically unacceptable 

results. This occurs at a value close to Ra,., = 5. Never- 

theless, the results for Ra,,, below this value are reliable 
and show that the convection affects the temperature 
profile and the vertical heat flux. 
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FIG. 5. Graphical representation of the local Nusselt numbrr 
(Nu) versus the centrifugal Rayleigh number (Ru,,). 

deviation from the linear relationship pertaining to 
the asymptotic solution (Nu = I + Ru,,,, 24, according 
to ref. [S]) becomes significant. The reason for this 
deviation is the evaluation of NM in ref. [8] by limiting 
the asymptotic expansion up to order one. The results 
of the present solution show that the relationship 
between Nu and Ra,,, is certainly not linear but closer 
to a second order polynomial function. 

5. CONCLUSIONS 

An analytical solution to the non-linear problem of 
centrifugally generated free convection in a rotating 
porous box was presented. The assumption that the 
vertical component of specific flow rate and tem- 
perature are independent of x restricts the validity of 
the solution to small values of the centrifugal Rayleigh 
number. As a result of increasing the value of Ra, the 
solution to the non-linear algebraic equations for the 
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